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Abstract:
Biomolecular computing, encompassing computations performed by molecules, proteins and DNA, is a central area of focus 
in Synthetic Biology research and development, which attempt to apply engineering design principles in living cells. Two major 
computation paradigms have been implemented so far in living cells - analog paradigm that computes with a continuous set of numbers 
and digital paradigm that computes with two-discreet set of numbers. Here, we analyze the biophysical and technological limits of 
large-scale gene networks created based on analog and digital computation in living cells. More specifi cally, we calculate the precision 
of analog systems and the noise margin of digital systems in living cells. We conclude that both systems are challenging to operate 
with low protein levels. To overcome this challenge, we show that analog systems should operate with a Hill coeffi cient smaller than 
1 and digital systems should be buffered. Furthermore, an analytical description of a biophysical model recently developed for positive 
feedback linearization circuits and used in analog synthetic biology, is presented. Finally, we suggest new directions for engineering 
biological circuits capable of computation. 
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Introduction: 
Computation has become an integral part of our evolution and 
marks a significant landmark in modern technological revolutions. 
The first abacus “calculator” was invented before 2000 BC and 
was based on counting continuous numbers, a process known 
today as an analog computation. However, scaling the complexity 
of computation was only truly achieved in the last century, when 
the digital transistor that counts discrete values, was invented. 
Computation based on digital design is relatively straightforward, 
with clear ON and OFF states that can and provide reliable results 
and form the basis for screening. Furthermore, digital circuits, with 
tightly controlled physical parameters, can be simply assembled 
to form complex networks, with very low cross-talk between 
components. The evolution of digital computation mainly relies 
on shrinking the transistor dimensions, which have almost reached 
the fundamental physical limits of scaling laws, breaking Moore’s 

law. In contrast to digital design, analog design computes with 
a continuous set of numbers, with each wire carrying many bits 
of information. In addition, it uses the powerful laws of physics, 
that are naturally embodied in analog transistors, to execute 
sophisticatedcomputational functions (e.g. addition, subtraction, 
multiplication, division, logarithms and power laws). The evolution 
of analog computation mainly relies on feedback loops to improve 
precision, attenuate noise and expand the working dynamic range 
[1]. 

The last decade witnessed major breakthroughs in biophysics 
and genomic technologies. Researchers have successfully 
applied biophysical models, by combining several genes to 
create basic biological networks with predictable behaviors in 
living cells [2,3,4]. At the same time, thanks to nanotechnology 
and biotechnology, significant advancements in genome DNA 
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engineering and assembly techniques have been achieved [5]. An 
outcome of these advancements is an extraordinary set of design 
rules and engineering tools that enable massive reprogramming 
of the DNA code in living organisms, including humans. This 
new technology, known as “synthetic biology” [6,7,8], attempts 
to translate engineering design principles to rational biological 
design [9,10], to achieve multi-signal integration and processing 
in living cells for diagnostic, therapeutic and biotechnological 
applications [11,12,13,14]. For example, living cells can be 
programmed to produce pharmaceutical compounds that are 
extremely challenging to synthesize using existing methods [15], 
microbiome bacteria can be programmed to detect and respond 
to changes in clinical homeostatis [16], and gene circuits can 
be engineered to identify and eliminate cancer cells [17]. These 
developments constitute a milestone that marks the beginning of 
new biomolecular computing technologies, based on nanoscale-
level gene-circuits in living cells, that set an alternative limit to 
Moore’s law. 
Early efforts at biomolecular computing have used binding and 
unbinding reactions to represent the “ON/OFF” or “1/0” logic 
states. Consequently, proteins that bind to DNA or promoters 
and activate high levels of gene expression, represent the “1” 
logic state, while unbound, free proteins yield low levels of gene 
expression, and represent the “0” logic state. Many genetic circuits 
that mimic electronic digital circuits, have been constructed to 
perform Boolean logic gates [18,19,20], counter [21] and memory 
[22] devices in living cells. However, because signals in living 
cells are graded in their nature [23,26] and do not generally 
exist in only two possible states, digital paradigms are often 
an oversimplified means of describing signals in living cells. 
Thus, such representation can lead to errors in construction and 
implementation of genetic circuits and challenge gene-network 
scaling in living cells [24,25]. 

To date, engineered artificial logic gates in living cells have been 
proven difficult to scale due to cellular resource limitations, a lack 
of orthogonal genetic devices, high leakage levels of synthetic 
genetic devices and the absence of suitably sharp input-to-output 
transfer functions [24,25]. Recently, genetic circuits have been 
constructed based on analog design [26]. Such gene circuits take 
advantage of the complex operations already naturally present in 
living cells, to execute sophisticated computational functions. For 
example, analog genetic circuits exploit positive feedback loops 
to implement logarithmically linear sensing, addition, division 
[26] and negative feedback loops while performing square-root 
calculations to determine chemical concentrations [26]. Analog 
genetic circuits involve fewer components and resources, and 
execute more complex operations than their digital counterparts 
[23,26,27]. For example, an analog adder can be achieved by 
simply combining two parallel circuits, where each accepts 
different input molecules and produces common output molecules 
[26]. This lies in sharp contrast to digital adders, which sum two 
“1” binary numbers, and require another stage to hold the new 
bit “Carry out” (“10”). For instance, a 4-bit digital adder may 
require more than 30 synthetic parts to operate, and at the same 

time, would place a substantial metabolic burden on a cell [23]. By 
analogy to electronics, noise in biological systems [28,29] can set 
the physical and technological limits of engineered analog-design 
large-scale gene networks based in living cells. For an in-depth 
analysis of the pros and cons of analog versus digital computation 
in living cells and electronics, readers are referred to excellent 
reviews on the subject [1, 27]. 

In the present article, we analyze the biophysical and technological 
limits of large-scale gene networks created based on analog and 
digital computation in living cells. The working dynamic range, 
noise margin, basal (leakage) level of biological parts, sharpness of 
input-to-output transfer functions and copy number of synthesized 
proteins/molecules are assessed. In the second part of this paper, 
we analyze analog computation in living cells. We close the work 
with suggestions for future directions for engineering computation 
functions in living cells. 

Accuracy of analog systems in living cells: 
Figure 1a shows two computational elements in living cells; in the 
first one, the biochemical reaction occurs at the protein-DNA level. 
It includes an input protein signal (x) that binds to a promoter and 
activates transcriptional and translational processes to synthesize 
an output protein signal (z). In the second element, the biochemical 
reaction occurs at the chemical/protein-protein level. Both bio-
computing elements can be described by a Michaelis–Menten 
enzyme–substrate binding reaction via a Hill function, given by: 

                      𝑧−𝑧0=𝑧𝑚𝑎(𝑥/𝐾𝑑)𝑛1+(𝑥/𝐾𝑑)𝑛                                                                                                (1) 
where, Kd is a dissociation constant of a biochemical reaction 
(Kd=K-1/K1), z0 is the basal level of binding, zmax is the maximum 
protein concentration achieved by the system, and n is the Hill 
coefficient, describing cooperativity. Figures 1b and 1c describe 
the input-to-output transfer function of Equation 1, which includes 
two regions: an analog continuous mode and a digital mode. In 
the analog mode, the function can be described by a log-linear 
transduction (  𝑣𝑠 𝑦=log (𝑥/𝐾𝑑 ), while in the digital mode, it can 
be viewed as two discreet values (“0” and “1”). Equation 1 can be 
approximated at x=Kd or (y=0), using Taylor series, as: 

                     𝑧−𝑧0=𝑧𝑚𝑎𝑥/2(1+𝑛/2𝑙(𝑥/𝐾𝑑))                                                              (2)
Log-linear transduction, known as Weber’s Law, is widely used 
in natural systems, such as audition, vision and cells [30], and 
offers advantages over linear-linear transduction. For example, 
small changes in the output of log-linear systems are proportional 
to small changes in the input signals divided by their intensity 
(Δz∝Δx/x), demonstrating a memory element in the system. In 
contrast linear-linear systems show proportionality between small 
changes in the output and small changes in the input signals only 
(Δz∝Δx). The input dynamic range (IDR) in an analog mode is 
defined as (Figure 1b): 

                 𝐼𝐷𝑅≡𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛=(𝑥𝑚𝑎𝑥/𝑥𝑚𝑖𝑛)                                                   (3) 
where z(x=xmax)-z0=0.8α and z(x=xmin)-z0=0.2α . Under there 
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definitions, the error between the log-linear analog function (Eq. 
2) and a Hill function (Eq. 1) at the limits of the IDR, is less than 
5%. By substituting xmax and xmin in equation 3, IDR is then 
given by:

                           𝐼𝐷𝑅≈1.2/𝑛                                                                                                             (4) 
Equation 4 shows that by decreasing the Hill coefficient or the 
sharpness of the input-output transfer function of the binding 
reaction, one can increase the log-linear range. In natural biological 
systems, the Hill coefficient typically ranges between 1 and 4 [28], 
and then the IDR varies between 1 to 0.25 orders of magnitude. 
Recently, Danial et al. showed that by implementing a graded 
positive feedback loop in synthetic biological systems, one can 
increase the IDR by 4 orders of magnitudes [26]. 

Signals often originate from the transport of discrete random 
carriers in systems; in electronics, it is a drift/diffusion of electrons 
[1], in physics, it is the movement of photons and in biology, it 
is the diffusion of biochemical molecules and proteins [29,31]. 
Naturally, these signals propagate through networks with random 
fluctuations, which can be described by a Poisson process, 
generating shot noise that scales as the square-root of the molecular 
count [29]. Here, we analyze the design rules, determined by laws 
of cellular noise, which set the performance limits of analog and 
digital biological systems. Typically, there are two orthogonal 
sources of noise in any biological system [31,32]. The first source 
is the intrinsic noise, generated by the system itself, and the second 
source is the extrinsic noise, generated by random fluctuations in 
the input or another environmental parameter. A stochastic model 
for cellular intrinsic noise may be greater than Poisson process, 
with addition of burst size (bint) is given by [29]: 

                                    𝜎𝑧,𝑡=√(1+𝑏𝑖𝑛𝑡)∙𝑧̅                                                                      (5) 
The burst size in a gene expression model is the average number 
of proteins synthesized (𝒛̅) per mRNA transcript. In a simple 
enzyme–substrate binding reaction, the cellular intrinsic noise is 
given by a Poisson process only. For simplicity, we assume that the 
system is operated at x= Kd and then, if z=zmax/2 is substituted in 
equation 5, we get: 

                                    𝜎𝑧,𝑡=√(1+𝑏𝑖𝑛𝑡)∙𝑧𝑚𝑎𝑥2                                                                                      (6)
The gain of an analog system in a log-linear mode, amplifies 
random fluctuations in the input signal (Figure 1d). Then, the 
contribution of extrinsic noise (σy) on the output signal at x=Kd in 
a log-linear mode is expressed by: 

                           𝜎𝑧,𝑡=𝑑𝑧/𝑑𝑙𝑜𝑔(𝑥/𝐾𝑑)|𝑥=𝐾𝑑∙𝜎𝑦                                                                                   (7)
The input y, is described by a log-linear function with input x, and 
therefore, the noise of y at x=Kd is a function of the noise of x (σx), 
and is given by: 

                               𝜎𝑦=𝜎𝑥/𝑥|𝑥=𝐾𝑑                                                                                                                        (8)
The input x, is a number of proteins or chemical molecules and 
thus, its noise (σx) can be described by a Poisson process, with 

addition of burst size (bext) (𝜎𝑥=√(1+𝑏𝑒𝑥𝑡)∙𝐾𝑑 ). By substituting 
the last term of σx in Equation 8, we get: 

                                𝜎𝑦=√1+𝑏𝑒𝑥𝑡/𝐾𝑑                                                                                                                         (9)
Equations 8 and 9 reveal that the noise in log-linear systems scales 
as the inverse of the square root of the molecular count, in contrast 
to linear-linear systems, where the noise scales as the square-root 
of the molecular count (𝜎𝑥∝√𝑥 ). It is simple to show that the gain 
of a log-linear system at y=0 (or x=Kd) is equal to: 

                     𝑔𝑎𝑖𝑛= 𝑑𝑧/𝑑(𝑥/𝐾𝑑)|𝑥=𝐾𝑑=𝑛∙𝑧𝑚𝑎𝑥/4                                                                (10)
By substituting Equations 9 and 10 into Equation 7, we find that 
the contribution of the extrinsic input noise on the output signal is:

                   𝜎𝑧,𝑡=𝑛∙𝑧𝑚𝑎𝑥/4∙√1+𝑏𝑒𝑥𝑡/𝐾𝑑                                                                                                            (11)
Because the intrinsic and extrinsic noise orthogonally contribute 
to the total noise of the system (σz) [29], the total noise can be 
given by: 

                                     𝜎𝑧=√𝜎𝑧,𝑡2+𝜎𝑧,𝑒𝑥𝑡2                                                                                                     (12)
If we substitute the values of intrinsic and extrinsic noise, i.e., 
Equations 6 and 11, respectively, into the last formula, we find that 
the total noise in the output of the analog signal in biochemical 
reactions is given by:

𝜎𝑧=√𝑧𝑚𝑎𝑥/2∙[(1+𝑏𝑖𝑛𝑡)+𝑛2∙𝑧𝑚𝑎𝑥/8𝐾𝑑∙(1+𝑏𝑒𝑥𝑡)]                                              (13)
Any small change in the input (Δy), within the IDR range, is 
amplified by the gain of the system and yields a change in the 
output (Δz=gain· Δy, Figure 1d, 1e). Biological systems have a 
log-linear transduction and therefore, the change of the output (Δz) 
as a response to change in the input (Δy=Δx/x) at x=Kd, is given 
by: 

                                            Δ𝑧=𝑛𝑧𝑚𝑎𝑥/4∙Δ𝑦                                                          (14)
For improved performance of analog systems, we require that 
changes in output are larger than the total noise of the system 
(Δz>σz) (Figure 1d). Thus, the minimum change in the input 
(Δymin) given by: 

               Δ𝑦𝑚𝑖𝑛=√8∙(1+𝑏𝑖𝑛𝑡)/𝑛2∙𝑧𝑚𝑎𝑥+(1+𝑏𝑒𝑥𝑡)/𝐾𝑑                                                              (15)
Equation 15 suggests that increasing the Hill coefficient (n), or 
the sharpness of input-to-output transfer function, of analog 
biological systems improves their performance. However, as we 
have shown in Equation 4, the IDR is reduced for high values of 
n, thereby affecting system performance (e.g., for a high value of 
n, the IDR can be smaller than the minimum change in the input 
(Δymin), thereby reducing the system’s performance). Therefore, 
we define the precision of an analog system, which is equivalent 
to the signal-to-noise ratio, as the number of levels that the system 
can distinguish in the presence of noise. This can be calculated as 
the ratio of IDR (Equation 4) and minimum changes in the input 
(Equation 15): 

#𝑁𝑙𝑒𝑣𝑒𝑙≡𝐼𝐷𝑅/Δ𝑦𝑚𝑖𝑛≈1/√8(1+𝑏𝑖𝑛𝑡)/𝑧𝑚𝑎𝑥+(1+𝑏𝑒𝑥𝑡)/𝐾𝑑∙𝑛2                                            (16)
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Equation 16 represents the precision of analog systems in a log-
linear mode, when we consider the contribution of extrinsic/
intrinsic noise and the input dynamic range. The equation suggests 
that for high molecular counts or protein copies, the precision of the 
system will be enhanced. It also shows the contribution of extrinsic 
noise, which depends on a Hill coefficient, and the contribution of 
intrinsic noise, which is independent of a Hill coefficient. We now 
analyze Equation 16 under two different conditions, in accordance 
with the proposed basic bio-computing elements in living cells 
(Figure 1a). In a chemical/protein-protein reaction, the dissociation 
constant is often larger than the maximum protein copy number 
(zmax<<Kd), and therefore, Equation 16 can be approximated as: 

                              #𝑁𝑙𝑒𝑣𝑙≈√𝑧𝑚𝑎𝑥/8(1+𝑏𝑖𝑛𝑡)                                                                       (17)
In this case, the intrinsic noise can be viewed as the fluctuations 
in chemical/protein-protein binding and protein synthesis. While 
Equation 17 is only an approximation, it describes the precision 
of analog systems when the extrinsic noise is small. Under these 
conditions, the precision of the system is set only by the maximum 
protein copy number achieved by the system and by the 
intrinsic noise (Figure 2a ), independent of IDR. 
Analog systems can be alternative to their digital counterparts 
(1 bit of output precision) when operating with 4 to 8 levels of 
information (equivalent to 2-3 bits of output precision), which, 
based on our analysis (Figure 2a), can be achieved with 1000 
proteins copies or molecular counts. In Escherichia coli, 1000 
molecule counts is equal to a concentration of 1μM, which is 
typically the levels of signaling proteins [33] (e.g., it was found 
that there are roughly 100 copies of EnvZ per cell and around 3500 
copies of OmpR).

Protein-DNA biochemical reactions that involve transcription and 
translation processes, often operate with low protein copy numbers 
[33]. For such systems with both intrinsic and extrinsic noise 
sources, precision in a log-linear mode is described by Equation 
16. For simplicity, we rearranged Equation 16 and assumed that the 
number of input and output protein copies are equal (Kd=Zmax/2) 
and the burst size for intrinsic and extrinsic noise is also equal 
(bint=bext=b): 

 #𝑁𝑙𝑒𝑣𝑒𝑙≈√𝑧𝑚𝑎𝑥/8(1+𝑏)∙(1+𝑛2)                                                 (18)
The burst size relies on the translation rate, number of amino acids 
(aa) in the synthesized protein and on mRNA half time. Typically, 
in Escherichia coli, the translation rate ranges between 10-20 aa/
sec, depending on growth conditions [33], and mRNA half time 
is around 3-5 min [33]. Therefore, the burst size in Escherichia 
coli, can range between 3-15. Figure 2b shows that, to achieve 
proper performance of analog systems based on protein-DNA 
biochemical reactions with 4-8 levels of information (2-3 bits of 
precision), the effective Hill coefficient should be smaller than 
one. The measured Hill coefficient in natural biological system is 
often higher than one, therefore, there are challenges in creating 
analog genetic circuits. 

Analog computation in living cells: 
The first step toward implementation of synthetic analog 
computation in living cells, is to broaden the input dynamic range 
of genetic synthetic parts. Protein-DNA interactions typically have 
a narrow dynamic range, spanning 0.5 - 1 orders of magnitude. 
The input dynamic range of genetic parts is set by the cooperative 
binding of proteins to DNA and is often positive, with a Hill 
coefficient larger than one. This would mean that once one protein 
is bound to a DNA binding site, its affinity for other proteins 
increases. By contrast, a negative cooperative binding reaction has 
a Hill coefficient smaller than 1. Dainal et al. [26] implemented 
a positive feedback loop and decoy binding sites to shunt the 
proteins away from their target binding site, and achieved a Hill 
coefficient smaller than 1, with a very wide input dynamic range. 
Comprehensive biophysical and biochemical reaction models that 
fit their experimental results were presented [26]. In this article, 
we show a new analytical model that can explain the contribution 
of a shunt on an open loop and positive feedback loop. Figure 3a 
describes a transcription factor x (TF) that binds to m identical 
promoters. The m-1 binding reactions act as a decoy or shunt 
pathway for the transcription factors. For simplicity, we assume 
that the Hill coefficients for all the promoters are equal to 1. The 
biochemical reaction model of this system is presented in Figure 
3b and its solution in steady state is given by: 

{𝑃𝑟𝑏1=𝑥∙𝑃𝑟𝑓1𝐾𝑑𝑃𝑟𝑓1=𝑃𝑟−𝑃𝑟𝑏1𝑥=𝑥𝑇−𝑚∙𝑃𝑟𝑏1                 (19)

→𝑃𝑟𝑓1𝑃𝑟=(𝑥𝑇−𝑚∙𝑃𝑟𝑓1)𝐾𝑑⁄1+(𝑥𝑇−𝑚∙𝑃𝑟𝑓1)𝐾𝑑⁄

where Pr is the total number of target promoters, Prf is the number 
of free target promoters, Prb is the number of target promoters 
occupied by transcription factors, xT is the total number of 
transcription factors and Kd is the dissociation constant of the 
binding reaction. Equation 19 can be viewed as a Michaelis–
Menten (MM) model (equation 1) with a negative feedback 
(Figure 3c). The addition of decoy or shunt pathways increases the 
strength of the negative feedback loop and shifts the switch point 
of input-output transfer function to higher values (Figure 3d). If 
we fit the simulation results of Equation 19 to a Hill function, we 
find that the effective dissociation constant scales with the number 
of shunt reactions (Figure 3e Kdeff=m·Kd). For a very large 
number of shunt reactions or very strong negative feedback loops, 
Equation 19 can be approximated as a linear-linear function (insert 
of figure 3d), with a very weak signal and is given by: 

                 𝑧=𝑧𝑚𝑎𝑥∙𝑃𝑟𝑓1+𝑧0                                            (20.1)

                  𝑧=𝑧𝑚𝑎𝑥∙𝑥𝑇𝑚∙𝐾𝑑+𝑧0                                          (20.2)
Equation 20 represents the copy number of synthetized proteins 
in an open loop and shunt circuit. To amplify the weak signal of 
the open loop circuit, a positive feedback loop regulating only 
the target promoter, was included [26]. Figure 4a shows the new 
positive feedback loop and shunt circuit. Danial et al. used external 
inducers (e.g., AHL as a quorum sensing molecule or arabinose) 
to trigger the positive feedback loop and shunt. A simple model of 
the circuit is presented in Figure 4b and includes three elements: 
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(1) a linear circuit that demonstrates the contribution of shunt 
reactions (Equation 20), (2) a positive feedback loop, and (3) a 
multiplication operator. The inducer-transcription factor binding 
reaction is modeled by a multiplication between the transcription 
factor and Hill function (xT=z*f(In)). By substituting the last 
expression into Equation 20, we can express the solution of a 
graded positive feedback loop and shunt circuit as: 

𝑧=𝑧0/1−𝑧𝑚𝑎𝑥/𝑚∙𝐾𝑑∙(𝐼𝑛) (21)
We can distinguish between two cases: (1) a very strong (zmax/
m·Kd>>1) positive feedback loop, which yields a sharp input-
output transfer function. In this case, the inducer-output protein 
transfer function is set by the transcription factor–promoter 
binding reaction and inducer-transcription factor binding reaction. 
The solution in this case is obtained by substituting xT=z*f(In) 
into Equation 19 (Figure 4c). (2) A graded positive feedback 
(zmax/m·Kd<<1), which yields a log-linear transduction between 
input and output (Figure 4c). This can be achieved by increasing 
the number of shunted biochemical reactions, or by decreasing 
the binding efficiency of transcription factors to the promoter, or 
decreasing the translation/transcription rates of proteins affecting 
zmax. In this case, the inducer-output protein transfer function is 
set by the inducer-transcription factor binding reaction only and is 
given by: 

𝑧≈𝑧0∙(1+𝑧𝑚𝑎𝑥/𝑚∙𝐾𝑑∙𝑓(𝐼𝑛)) (22
Figure 4c shows that the reduction of zmax/m·Kd broadens the 
input dynamic range of the positive feedback circuit. We can 
see that our analytical model fits (Equation 22) the exact model 
constructed based on biochemical reactions. The positive feedback 
loop and shunt circuit cannot widen the input dynamic range 
(IDR) more than the dynamic range of the inducer-transcription 
factor binding reaction (Figure 4d). The maximum signal that 
can be achieved in such a system is z=z0·(1+zmax/m·Kd), and 
therefore, the addition of shunt biochemical reactions decreases 
the signal output. A simple explanation was provided by Danial 
et al [26], who suggest that the shunt creates several binding sites 
that delay the saturation of the transcription factor-binding site 
reaction at the target promoter. At the same time, as the inducer 
concentration increases, the positive feedback loop enables 
continuous production of just enough transcription factors. 

Synthetic analog parts that operate in a log-linear mode with a 
wide input dynamic range, can be simply integrated into more 
complex circuits for higher order functions [26]. For example, a 
genetic analog adder has been constructed in living cells by simply 
combining two analog synthetic parts (e.g., positive feedback loop 
and shunt) that each accept different input molecules and produce 
the same output molecules [26]. The addition operator was 
achieved by summing up the common diffusion fluxes of output 
molecules [26]. This operation is equivalent to Kirchhoff’s current 
law in electronics. By contrast, a genetic digital adder cannot 
be constructed using the same principle that exploits a common 

output signal, since every wire in digital design represents only a 
bit of information, and would require an additional stage to hold 
the carry out. For example, building a half 1 bit adder in bacteria 
requires 7 synthetic parts [34]. Analog computation presents an 
alternative to digital computation when the number of synthetic 
parts is limited. An analog subtractor can be constructed using 
the same principles applied for the analog adder [26]. The analog 
subtractor has two log-linear stages that produce common output 
proteins, one stage with a positive slope and another stage with 
a negative slope. Danial et al. [26] has used a LacI repressor to 
implement an analog stage with a negative slope. 

Noise margin of digital systems in living cells: 
Figure 1c describes the input-to-output transfer function of 
Equation 1 in a digital mode, as log-log (𝑠=𝑙𝑜𝑔 (𝑧/𝑧𝑚𝑎𝑥) vs 𝑦=log 
(𝑥/𝐾𝑑)). It can be viewed at two discrete levels (low and high): 

𝑠={𝑠𝐻 𝑦≥𝑦𝐻𝑠𝐿 𝑦≤𝑦𝐿 (23)
This device demonstrates a buffer logic gate operating in its 
extreme regions. This is exactly the opposite of its use as an analog 
device, where it operates in a log-linear region, at the middle of 
the transfer function (x=Kd). Digital logic gates utilize the gross 
nonlinearity exhibited by biochemical reactions in living cells. 
With these observations, the low-level output (sL) does not depend 
on the exact value of the input signal (y) as long as it does not 
exceed the low-level input (yL). Similarly, we observe that high-
level output (sH) does not depend on the exact value of the input 
signal (yL), as long as its value does not fall below the high-level 
input (yH). When the input signal is higher than the low-level 
input and lower than the high-level input (yL<y<yH), the output 
increases and the logic gate enters its transition region, where the 
device can only act as an analog device. Similarly, we can define 
the logic levels for others logic gates. Ideal digital logic gates have 
a zero width of transition region and infinite sharpness of input-
to-output transfer functions (very high Hill coefficient), operating 
in the middle of their transfer function at x=Kd (yL=yH=0), with 
maximum gain. However, the presence of intrinsic and extrinsic 
noise in biological and electronic systems limits the performance 
of ideal logic gates and drives a transition region with an input 
noise margin (INM) and output noise margin (ONM): 

                          𝐼𝑁𝑀≡𝑦𝐻−𝑦𝐿=log (𝑥𝐻/𝑥𝐿)                                            (24)

                 𝑂𝑁𝑀≡𝑠𝐻−𝑠𝐿=log (𝑧𝐻/𝑧𝐿) 
The minimum INM will be set by the extrinsic noise of the input 
system and is given by: 

                                     𝐼𝑁𝑀≥√1+𝑏𝑒𝑥𝑡/𝐾𝑑                                                                                     (25)
In Equation 24, we assumed that the buffer logic gate operates at 
x=Kd (INM>σY). As we have shown, the transition region (or IDR 
in analog systems) is set by a Hill coefficient. For simplicity, we 
approximate the INM≈1/n (Equation 4). Then, Equation 25 can be 
given by: 

                                           𝑛≤√𝐾𝑑/1+𝑏𝑒𝑥𝑡                                                                                              (26) 
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Equation 26 is demonstrated in Figure 5a, which shows that for 
a low level of input protein (or a low dissociation constant; for 
simplicity we assumed that Kd=Zmax/2), the digital logic gate 
should operate with a very high input noise margin and a low 
Hill coefficient. Under these conditions, the system has a graded 
behavior, acting as an analog system. Our analysis has shown that 
noise limits the performance of both analog and digital systems in 
living cells, rendering them extremely challenging to operate with 
low level of proteins. Alternatively, operating with a high level of 
input proteins can improve the performance of digital systems and 
reduce the INM. However, it increases the output noise margin. 
To quantify this insensitivity property, we consider the situation 
that often occurs in digital systems, where one buffer logic gate 
drives another buffer logic gate (Figure 5b). In this case, the digital 
cascade can only operate properly when the low-level output (sL) 
of the first stage is lower than the input level (yL) of the second 
stage and when the high-level output (sH) of the first stage is 
higher than the input level (yH) of the second stage. The output of 
the first stage often includes an intrinsic noise which sets the limits 
on the performance of the cascade (Figure 5b), and therefore we 
can write: 

                           𝑦𝐿≥𝑠𝐿+𝜎𝑠𝐿                                                                                      (27.1) 

                        𝑦𝐻≤𝑠𝐻−𝜎𝑠𝐻                                                                                   (27.2) 
Because the relation between the output s and output z is described 
by a log-linear function, the noise of output s is given by 𝜎𝑠=𝜎𝑧/
𝑧 ̅ and 𝜎𝑠=√(1+𝑏𝑖𝑛𝑡)/𝑧 ̅ . Subtracting Equation 27.2 from Equation 
27.1, i.e., substituting the noise of the output s and assumed that 
zH >> zL gives: 

                        𝑂𝑁𝑀≈𝐼𝑁𝑀+√1+𝑏𝑖𝑛𝑡/𝑧𝐿̅̅̅                                                                   (28) 
To better understand Equation 28, we will cascade three identical 
buffer logic gates with zL=10 and bint=9 (Figure 5c). The 
resulting output noise margin of every layer i is larger than its 
input noise margin by one order of magnitude (ONMi=INMi+1), 
and the output noise margin of the last layer is larger than the 
input noise margin of the first layer by three orders of magnitudes 
(ONM3=INM1+3). For example, constructing a cascade of three 
logic layers, with an initial input noise margin of one order of 
magnitude, causes the last stage to have a very wide input dynamic 
range spanning 4 order of magnitudes (Figure 5c). Alternatively, 
we can increase the low-level output to 100 molecules, achieving 
ONM≈INM, however in this case, the high-level output is set to 
very high values. The basal level (z0) in synthetic biological parts, 
is often very large, and therefore, it sets the low-level output of 
digital systems (zL≈z0). If we substitute the INM in Equation 25 
into Equation 28, we find other important relations: 

                       𝑂𝑁𝑀=√1+𝑏𝑒𝑥𝑡/𝐾𝑑+√1+𝑏𝑖𝑛𝑡/𝑧0̅̅̅                                                                 (29.1) 

                 𝑂𝑁𝑀≈1/𝑛+√1+𝑏𝑖𝑛𝑡/𝑧0̅̅̅                                                                            (29.2) 
The last two equations quantify how the output noise margin of 
digital systems in living cells relates to intrinsic and extrinsic noise 
sources, Hill coefficient, basal level and molecule counts. Based 

on our analysis, in contrast to analog systems, the basal level is 
extremely important in determining the performance of digital 
systems (Figure 5d). 

Digital computation in living cells have been widely used in 
synthetic biology and have been reviewed in several articles 
[7,8,35]. In this article, we briefly reviewed and discussed two 
key synthetic digital devices that were implemented in living 
cells. In the AND logic gate, output is only high if all inputs are 
high. The devices were constructed in bacteria [36,20], yeast [37] 
and mammalian cells [17], using a binding reaction between two 
synthetic parts regulated by input promoters. For example, Nissim 
et al. [20] constructed a system with two inputs that are duplicates of 
endogenous promoters that regulate the expression of a two-hybrid 
system, with one part fused to an activation domain, and the other 
to a binding domain. Together, they form a transcriptional complex 
that can bind a synthetic output promoter to express an output gene. 
By design, output is only generated if both endogenous promoters 
are active in the cell above a specific threshold. In the OR logic 
gate, output is high if at least one input is high. This device was 
constructed using two promoters that regulate the same gene [18]. 
Taking different approaches, several groups have constructed logic 
gates and memory using recombinase proteins [22]. 

Summary: 
Synthetic and Systems Biology have recently learned to exploit 
analog and digital genetic circuits for computation and decision 
making. In this work, we analyzed the precision of analog 
systems (Equation 18) and the noise margin of digital systems 
(Equation 29). We demonstrated that the performance of analog 
and digital systems in living cells is significantly impacted by 
extrinsic and intrinsic noise sources. We showed that both systems 
are challenging to operate with low protein levels and that both 
systems require optimization. For example, analog computation 
operates with Hill coefficients smaller than 1 and cascading of 
digital systems increases the input noise margin, conditions under 
which the digital system has a graded behavior acting as an analog 
system. We also have shown that, in contrast to analog systems, the 
basal level is extremely important in determining the performance 
of digital systems. Furthermore, we argue that, compared to digital 
design, analog computation is very efficient in its use of synthetic 
parts, however, embedded digital systems can operate reliably with 
low molecular counts. Therefore, biological systems that integrate 
both analog and digital circuits may provide an alternative strategy 
for scaling the complexities of computation in living cells [26], 
[27]. Although this design is widely used in electronics, in such 
contexts, it mostly aims to convert analog signals to a two-logic 
states and not to build efficient systems. Therefore, in our opinion, 
a hybrid analog-digital architecture in living cells should take a 
different approach than in electronics.
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 Figure 1: (a) Basic bio-computing elements in living cells, including a protein that binds to a 
promoter and an inducer that binds a promoter (k1 is the forward rate of the binding reaction, k-1 
is the reverse rate of the binding (unbinding) reaction). (b) Analog mode: input-to-output transfer 
function of equation 1 (blue line) and log-linear function at y=0 (black line). (c) Digital mode: 
Equation 1 represents two logic states “0/1”. (d) Noise analysis of log-linear analog systems, (e) 
Total noise is the sum of amplified extrinsic noise and intrinsic noise in a log-linear analog systems

(a)

(c)

(e)

(b)

(d)
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Figure 2: Noise Tolerance Analysis for reliable analog computation in living cells. (a) The figure shows the precision of analog systems 
in a log-linear mode, when we take into account the contribution of intrinsic noise and input dynamic range (Equation 17). (b) The figure 
shows the precision of analog systems in a log-linear mode, when we take into account the contribution of extrinsic/intrinsic noise and 
input dynamic range (Equation 18).

(a)

(b)

(d)

(b)(a)

(c)
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Figure 3: (a) Open loop and shunt circuit: a transcription factor binds to m identical promoters, (b) biochemical reaction model of an 
open loop and shunt circuit, (c) a schematic model includes Michaelis–Menten and a negative feedback for the open loop and shunt 
circuit. (d) Simulation results show the contribution of shunt biochemical reactions on the activity of the target promoter. (e) The simu-
lation results show the contribution of the shunt biochemical reactions on the effective dissociation constant.

(e)

(a)

(c) (d)

(b)

Figure 4: (a) Positive feedback loop and shunt circuit: the transcription factor is produced by its own promoter and binds to m identical 
promoters. (b) A schematic model of positive feedback and shunt circuit includes a linear part. (c) Simulation and analytical results 
showing a graded positive feedback loop. (d) A schematic model for the input dynamic range of positive feedback shows the contribution 
of shunt biochemical reactions
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Figure 5: (a) Input noise margin analysis for digital circuits in living cells (Equation 26). (b) Contribution of intrinsic noise to the output 
noise margin in digital circuits in living cells. (c) Contribution of noise margin on cascading digital circuits in living cells (d) Output 
noise margin analysis for digital circuits in living cells (Equation 29).
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